If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2+3n-240=0
a = 1; b = 3; c = -240;
Δ = b2-4ac
Δ = 32-4·1·(-240)
Δ = 969
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{969}}{2*1}=\frac{-3-\sqrt{969}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{969}}{2*1}=\frac{-3+\sqrt{969}}{2} $
| 7(3-n)+3n=-2n+9 | | 3=k/10 | | -2=-8x+2/3 | | 41=5u-9 | | r+17=24 | | 987=-1x | | 4y-8=4-8 | | 3x3x3x3x=6 | | -8=n+15 | | f/7-22=-28 | | 2x-28=9x | | 7x+17=12x-3 | | g/2+11=22 | | 3(b-4)-5b=2 | | 12x4=56 | | 2x+5+2x+3x=0x+8 | | 2x+5+2x+3x=0x+6 | | 2x+5+2x+3x=0x+7 | | -42=6p | | 2x+5+2x+3x=0x+4 | | -2x+11=10 | | 2x+5+2x+3x=0x+2 | | 3x+1=-11-2x | | 2x+5+2x+3x=0x+1 | | 3s+4(6)=26 | | x^2+36=98 | | 9+8=5x6 | | 13=t/7+t/6 | | 90+(2x)+(x+15)=180 | | 7x-5=85 | | 5(u+5)-8u=-5 | | 72=7y+44 |